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Motivation

e For the construction
iIndustry:

. e
I i i
i

o | TRITEINY

e How green are green |
buildings? |

e Car manufacturers
required to provide MPG,

why different for
buildings?
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Motivation

e For users/owners of

(‘1

A

buildings:

e You can not control what
you do not measure

e Grocery shopping
analogy
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Vision

e Energy-aware Smart
Facilities

e Aware: continuous
monitoring, reporting.

e Smart: user feedback with
actionable information,
able to predict, linking
cause and effect: really
smart.
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Problem Definition

e Low feedback rate:
e Monthly bill
e Dalily averages

e Difficult to obtain better data:
e Hardware installation difficulties

e Price:
Plug-through meters (~$100/each)
Circuit-level meters (~$3000/panel)

e Even if consumers had the data:
e Analyzing it is cumbersome
e Recommendations, forecasting should be automatic
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Proposed Approach

e Non-intrusive load monitoring (NILM):

e Obtain inexpensive measurements of total power
consumption.

e Use signal processing and machine learning techniques
to disaggregate total load into individual appliances.
e Leverage existing infrastructure:

e Electric circuits as communication medium between
appliances and system.

e Correlate with other sensor data: light intensity sensors,
temperature, etc.

e More intelligent, less expensive solutions.
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Previous Work

e NILM has been around for 20+ years.

e Very promising results in:
e Controlled laboratory settings
e Shipboard systems
e Detecting large, quasi-static loads.
e Typical residential buildings of the early 90's (no variable loads).

e One commercial product marketed for electric utilities.

e Our contributions:
e Real world scenarios, in currently occupied buildings.
e Interested in the applications of the disaggregated data.
e Applying current Machine Learning techniques.
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Our approach to NILM In detall...
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The Hardware

e Incoming signals:
e Aggregate Voltage and
Current.
e Data Acquisition card
(DAQ) converts analog to
digital signals.

e Computer processes the
raw waveforms and

computes aggregate power

metrics: real power (P),
reactive power (Q), etc.

e Event detection and
classification algorithms
use this data.
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Event Detection

e Probabilistic approach
e Generalized Likelihood Ratio

o P(x ,
pOSS|bIe_event — arg maX Z In ( i | :uafter Uafter)

1
1< j<k =] P(Xi | Hiefore 1 O-before)

e Currently testing wavelets
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Real / Reactive Power

Event Classification:
Feature Extraction

Overlapping Concatenated Transients (Pa, Pb, Qa, Qb) for a Light Bulb Turn Off Event
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Event Classification:
Feature Extraction

e Three methods:

e Delta metrics: difference between pre/post
average

e Transient profile: all data-points in pre/post
windows

e Ridge Regression coefficients:

Polynomial basis: 1st order, no bias-term, proved
best.

Gaussian Radial Basis Functions: 6 or 7 RBFs were
enough

Fourier basis: 1 or 2 coef. proved best
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Event Classification:
Training Classifiers

e Two different setups:

e 17 appliances in an occupied residential building
(Real World)

e 8 appliances in a laboratory (Noise Free)

e Four different classifiers:
e Gaussian Naive Bayes
e 1-Nearest Neighbor
e AdaBoost
e Decision Trees
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Event Classification:
Training Classifiers

e WireSpy: a tool to
support the training
process.

e Clamps around the
appliance’s wire.

e Detects changes in the
overall current draw.

e Time-stamps those
changes and sends this
Info. to the system
wirelessly.

e \We obtain accurate
ground truth.
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Event Classification:
Training Results

e k-Nearest Neighbors (KkNN)
e NF —-90% (RBF Coef.), RW — 81% (RBF Coef.)

e Gaussian Nailve Bayes (GNB)
e NF —83% (Delta), RW — 57% (Poly. Coef.)
e AdaBoost

e NF —76% (Poly. Coef.), RW — 0.50% (Poly.
Coef.)

e Decision Trees
e NF —85% (Delta), RW — 58% (RBF Coetf.)
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Event Classification:
Validation Results

Validation Results
(Accuracy in %)
Delta

Whole Transient

: Polynomial
MNUEEREER coefficients

Fourier Coefficients

RBF Coefficients
Delta

Whole Transient

Polynomial
Real World  coefficients

Fourier Coefficients

RBF Coefficients

GNB

52.94
38.24

58.82
64.71

67.65
47.69

9.52

61.90
50.00
47.62

KNN, k=1

67.65
73.53

67.65
79.41

67.65
73.81

73.81

80.95
80.95

76.19

Ada
Boost

51.52

51.52

2.94

**

36.59

61.90
55.00
35.71

DT

61.76
58.82

52.94
64.71

64.71
42.86

47.62

57.14

94.76

54.76




Conclusions

e Very simple metrics and algorithms have a decent
performance: slope and 1-NN.

e Our algorithms maintain their performance in noisy
environments (real world).

e Facilities with this kind of system can obtain a
detailed report with the operational schedule of all
appliances.

e Future work includes adding other existing sources
of information to correlate with: environmental
sensors, time of day, etc.
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Video Demonstration
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Questions?
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lucio@andrew.cmu.edu
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